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ABSTRACT

These notes (essentially unedited) were sent to W. Parry in 1964. The first two
parts are complete and in a letter to Parry at that time Hahn indicated his
intention to publish them. Evidently he did not manage to do this. The remain-
der of these notes represents an attempt to establish a theory of quasi-
discrete spectra for discrete one-parameter flows. Hahn indicates the gaps and
in a following note Parry clarifies his theory. The first part of these notes
presents a characteristic example of a discrete one-parameter flow with quasi-
discrete spectrum. Ergodicity, minimality and distality are established. The
second part examines the Banach algebra of functions on R generated by
{exp q(t): q a real polynomial of degree < n+ 1} and shows that the shift
isometries arise from a discrete one-parameter flow on its maximal ideal
space A, and that if n is finite this flow is isomorphic to the example ex-
amined in the first part.

Introduction

We let X be a compact topological abelian group. We say that T is an affine
transformation if there is an automorphism S of X and an element x5 € X such
that T(x) = x, - S(x). We ask the question as to when is it possible to find a one
parameter group 7,, ¢ a real number, of affine transformations of X given by
T.(x) = x,* S(x). Since T, = T,T, we see that

0.1) Si., = S.S,
(0'2) Xi4s = xxSt(xs) .

These conditions are necessary and sufficient for the T, to form a one parameter
group. Since Iwasawa has shown that the automorphism group of X is totally
disconnected it follows that the family 7, cannot be continuous in ¢. Thus to
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begin with it is not clear that one parameter groups of affine transformations
exist. We intend to exhibit a family of examples of one parameter groups of
affine transformations. These will be analogous to the single affine transformation
with quasi-discrete spectrum. We will then study this notion from the abstract
point of view. Finally we consider the relation of these transformations to the
compactification of the reals with respect to a particular function algebra.

1. The example

We let ' be the Bohr compactification of the reals. We let R, be the additive
group of reals with the discrete topology. Let X =T x .-+ x I' (n times); then
X =R, % - x R, (n times) where X is the dual group of X. If we use
y = (y, -7, to designate elements of X and v = (v,,--, v,) to designate the
elements of X and (v,7) to mean the value of v at y then

@)= Z 0.

We define now a one parameter group, S, of automorphisms of X. If g = S

then
I“’n = v’l

bn-1 = Pl(t)vn + Up-1
Un—-2 = Pz(t)vn + Pl(t)vn—l + Up-2

......................

[‘l'n—j = Pj(t)v,, + Pj’l(t)vn—l + s + vll—j

Hy = Pn—l(t)vn + P,,_z(t)v,,_z R o 2

where Py = Mz D-CZk+D o5

k! ’
Po(t) = 1.

We see easily that for each ¢ the mapping S, is an automorphism of X.
We now wish to show that S,,, = S, S,. This actually is a direct result of the
following equation.

(1.1) Pi(s + 1) = Po(s)P(t) + P1(s)Py~1(1) + -+ + Ps)Po(1) .

If s and ¢ are integers the equation says that the number of ways of choosing k
objects from s + ¢ objects (P, (s+1)) is equal to the number of ways of choosing
none from the s group and k from the ¢ group plus the number of ways of choosing
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1 from the s group and k — 1 from the ¢ group plus etc. Since in both sides of this
equation all expressions are polynomials in s and ¢, and since the equation is
true for all integral values of s and ¢ it must hold true for all s and ¢. If we let
w = $,S,(v) then
Woey = [PiS)Po(t) + P;_((s)Py(t) + -+ + Po(s)P,(1)]v,
+ [P;—1(5)Po(t) + P;_5(s)Py(f) + +++ 4 Po()P;_ 1 ()]v,—y -

o+ Py(s)Po(t)0,—;.

If we let u =S, (v) we have
Hu-j = Pft + v, + Pj_y(t + S)0,—1 + =+ + Uy

Using (1.1) and comparing the above equation we haveS,,,= $.S,. We let S, be
the dual automorphism of S,. That is (S,y,v) = (y,S,v) for ye X and ve X. We
immediately see that
1.2 S =85,-5,.

Our next task is to find a family y(f) € X for which (0.2)is satisfied. Let a(f)e I be
defined by the following: (a(t), s)=e™ for each real number ¢t and se R,. This is
a dense one parameter subgroup of I. It is immediate that a(t + 5)= a(t)a(s). To
see that it is dense we need only observe that if ne R, and (a(f),n) = 1 for all ¢
then n = 0, We define y(f) as follows
(1.3) W) = (1), (P (1)), al(P3(D)) -+ (P, (1)).

We now must show that (0.2) holds, i.e.,p(t+5)=7() * S,(¥(s)). This is equivalent
to showing that
(7t + 5),0) = (1) S(¥(s)), v)

= (y(1), v) (¥(s), S,v)
for all ve X.
If we let exp x = e'* then we have

(3(t + 5),v) = exp (v, Py(t + 5) + 0, Py(t + 5) + -+ + v, Pt +5))
and
(1), 0) = exp (v,P1(f) + vV 2Po(1) + -+ + 0,P,(0))

(¥(s), S) =
exp {P(8)[Pp—1 (8)v, + Pp_3 ()0, 1 + === P1 ()0, + vy]
+ Pz(s)[Pn—z(t)vn + Pn_.3(t)U,,_1 + "'02] + e+ P,,(s)Po(t)v,,}.

and



Vol. 16, 1973 FLOWS WITH QUASI-DISCRETE SPECTRA 23

Comparing the three equations above and using (1.1) we see that (0.2) holds.
We have thus shown that if

(1.4 T(y) = y(t) - S(y) then
Tt+s = T,O Ts'
We wish to examine some of the properties of the dynamical system (X, T,)

which we have just described. In order to do this we establish some convention.
Let Rﬁ X for j =0,1,2---n—~1 be the set of all ve X,v = (03,02, 00544

--v,) where 0 = vy, = v;,, = =y, and let R; = £ We defineT/= X for
j =0,1,2.--nin a similar fashion. We let R, be defined by the equation
1.5 R=5-1

Thus we obtain
(1-6) Rt(?) = ')’—lst(')’)-

Since the T, form a one parameter group we see that R, and R, satisfy the resolvent

equations

(1.72) R-R =R, —R -R

(1.7b) Ri*R(y) = R ) [RMI™ [RM] ™

Again from the fact that the T, form a one parameter group we obtain
(1.8) Pt + 5) = ot) - als) - R(as)).

TueoReM 1. Let (X, T,) be defined as in the preceding paragraphs. Then
(X,T) is ergodic.

Proor. Let H, be the subspace of L?(X)spanned by the functions determined
by R;. These are all functions, of the form f,(y) = (y,v) where ve RL The ortho-
gonal complement H, of H, is the subspace determined by R3\Rj (set theoretic
complement). We define the unitary operation V,:L*X) - LX) by V. f =
SfoT, for all fe L(X) and t a real number. We observe that if f, is deter-
mined by ve R} \R}] then V,f, = A g f, where g is a non-constant character and
A€ C with ]AI = 1. We then have

(Vo ff,) = 0 for ve R}\ R
Using continuity and linearity arguments we obtain

lim (V.f,f) = 0 for fe H,.

t=to
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We now will show that (X, T,) is ergodic by showing that ¥, has only constants
in the eigenspace one. Let fe L*(X) and suppose V, f=f, f=f, +f, where fe H,
and f, € H,. Since H, and H, are stable under V,and V,f=f, we get V. f1=f1
and V.f, = f,. Since (V.f,,f>) = 0 we see that f, = 0. Thus fe H, and is a func-
tion of the variable y, alone. We have V,f(y,) = f(«(t)y,). Since {x(#)} is a dense

subgroup of I" we see that f is constant almost everywhere and this concludes the
proof.

THEOREM 2. The system (X, T,) is distal.

PrOOF. We suppose that {T, f:meA} and {T, y:meA} are two nets in X
such that there is a ze X for which T, f — z and T, y - z. We must show that
B = y in order to prove our theorem. Since T, (B8) = y(t,,) S;_(B) and since X is a
group we see that S, (yf~!) — e. Thus it is enough to show that if S, () — e
then a=e. We compute this from the definition of S, . If S, () — e then for every

ve X we have (S, (2),0) = (0,5, 0) = L. If a = (2,0, a,) and 0 = (v -+ ,)
then

8; (0) = (0P y(ty) + = + Py(t,) 03 + vy,
UnPn—Z(tm) + -+ Uy,

v,)-
Our procedure is inductive. Let 0 = v, = v; = -+ = v, then (S:,(0), v)
= (@;,v;) = 1 for all v, € R, so that a, = e. The argument proceeds step by step
up to n showing that « = e and completing the proof,

THEOREM 3. (X, T)) is minimal.

ProorF. Since (X, T,) is distal we know from Ellis’ theorem that each orbit is
almost periodic (using the discrete topology on the parameter t). Thus to show
minimality we need only show that there is a dense orbit. We wish to.show that
the points T,(e) are uniformly distributed. This is of course even stronger than
density. We see this as follows: T(e) = y(£) = (a(t),(P(1)), ---, o, (P,(£)). Let
v = (vy,+,0,) be a character of X, then (v,7(t)) = exp (vyt + v,P,(¥) + -
+ v, P (). If v # o then it is easy to see by a well-known result of Weyl that
limp_ , (1/2T (T (v, 9(2)) dt — O.

But this is the criterion for uniform distribution and the theorem is complete.
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We now indicate that the preceding construction can be carried out in the case
of infinite product spaces. Let X =II7 I" be the unrestricted product of the I'’s.
Then X = XTR, the restricted product or finite direct sum of the R,. Since each
element ve X has only finitely many non-zero coordinates we may write
v = (v, 0, * 0,,0,0, ) and $, is defined as before. We also define
Y1) = (a(2), (P, (2)) ++» -+ o P,()+++) and let T(y) = (1) S(y) as before. We again
see that (X, T,) in an ergodic distal minimal dynamical system.

2. Compactifications of {exp g,(1)}

Let C(R) be the Banach algebra of all bounded complex valued continuous
functions on the real numbers. By A, we shall mean the closed subalgebra generated
by all functions of the form exp g(s) where g(s) is a polynomial with real coeffi-
cients of degree less than or equal to n. We let n = co and define A to be the
closed subalgebra generated by all functions of the form exp g(f) where g is a
polynomial with real coefficients. We define the transformation U, on C(R) as
follows U,f(s) = f(s + t). Each U, is an isometry of C(R) and U,,,
= U,o U,. The family is however not continuous in the parameter ¢ since we
allow non uniformly continuous functions in C(R).For each n (A,, U,) forms a
dynamical system.

For each n we let Y, be the compactification of R with respect to A,. That is,
Y, is characterized by the following: Y, is compact and there is a one-to-one con-
tinuous map # : R — Y, whose image is dense in Y. If feA, then f(y(s)) may be
extended to a continuous function of Y,. Also if fe C(Y,) then there is an f e A
for which f(5(s)) = f(s). Under such circumstances each U, induces a homeomor-
phism on Y,. We again call this by the name U,. Then(Y,, U,) forms a dynamical
system.

We use (T, T,) to indicate the systems described in the previous section where
r,=1ir.

THEOREM 2.1. (Y,, U,) is isomorphic to (I,, T,).

Proor. Let B(I',) be the set of all continuous functions on the reals obtained as
follows: fe B(T,) if there is an fe C(T,) such that f(s) = f(T(e)). It is not hard to
see that in order to prove our theorem we need only show that (A,, U,) and
(B(I'), T,) are identical. From the definitions of the action of U, and T, we need
only show that A,= B(T',). Let v = (v; --,v;,---) be a character on I',. Consider



26 F. HAHN Israel J. Math.,

(v, T(e)) = (v,7(5)) = exp (v5s + v,P5(s) + v3P;(s) -+ v;P,(s)-++). Since only fi-
nitely many v, are not zero we see that v restricted to T((e) is in A,. Since the charac-
ters generate C(I,) we see that B(I',) = A,. We need only show that if exp g(r) €A,
then there is an f'e C(T,) for which f(T(¢)) = exp q(f). Now q(t) has degree j < n
if n is finite and j < n if n = 00. Choose a character v = (vy,+++,v;,0,:++). Then
(v, T(e)) = exp (vyt + v, P5(t) + -+ 4 v;P(1)). Since the degree of P,(r) is exactly
k we see that v may be chosen such that (v, T,(e)) =exp gq(#). Thus A, > B({T,)
showing that A, = B(I',) and completing the proof.

3. Quasi-discrete spectrum for one parameter dynamical systems

We now assume that X is a compact Hausdorfl space and that for each t e R; we
have a homeomorphism T, : X — X such that T,,, = T,o T,. We consider the
system (X, T,). Notice we do not assume continuity in the parameter ¢t. We further
assume that (X, T,) is minimal. We now wish to define quasi-eigen functions and
quasi-eigenvalues for (X, T,). Let V,f = f T, for each fe C(X)

We consider first all fe C(X) for which V,f = A(f)f. Since V, is an isometry of
C(X) it follows that | A(f)| = 1 and thus by minimality that |f] is constant. With
this in mind we let G, be the set of all f for which l f | = 1 and V,f = A(f)f where
M) e C. We see easily that G, is a group under multiplication. We let H; be the
set of all functions 4 : R; —» C such that ]l(t)] = 1 and there is fe G, for which
V.f = Af. Since V,,, = V, o V, we see that A(t + s)= A(f) - A(s) so that A is a
character of R,. Suppose we have already defined Hic H,< < H,,G; =G, =
..+ & G, with the following properties. Each G; is a group of functions of modulus
one contained in C(X). Each element f of H;is a function f: R; x X —» C, fis of
modulus 1. Furthermore if ¢ is fixed then f(¢, ) € G,_  and there is a g € G for which
V.g = f(t, )g. Each g € G, has the property that V,g = f(t, )g and fe H,.

We now define G,,, and H,,,;. We let G,,, be the set of all functions g of
modulus one such that for each t € R, there is an f, € G, such that V,g = f,g. We
let H,,, be the set of all functions f : R;x X — € which have the property that
there is g € G, . for which f(t, x) = f(x) where V,g = f,g. All the previous proper-
ties are preserved. We also note that the H; are groups under multiplication. Let
H= U2Hand G= U2,G.

We observe that it is a consequence of the minimality of (X, T,) that if two
quasi-eigen functions have identical quasi-eigenvalues then one is a constant mul-
tiple of the other. For suppose V.g,=f,g; and V,g,= f,g, then V,g,97' =
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! and thus g,g5 ! is constant. On G we define the following homomorphisms :

919z
(€N Rg =g 'Vg.

That is, if V,g = f,g then R,g = f;. For each fixed ¢ we have f,eG,_, if geG,,
We observe

(3~2) RtRs = Rth,
for R(Rg) = (Rg)™* V{(Rg)
=("'Vg) Vg V9
=g Vtg_l(ng)—l Vs+tg
="' Vg) Vg7 V9)
= (Rg)™' V{(Ryg)
= R(R,9).
On H we wish to define a homomorphism R, : H - H such that RH, = e
and RH,c H,_,.
If fe H, then there is a g € G, such that f(s,x) = (R,g)(x).
(33 Let Rf(s,x) = (R(R,g)(x).
This mapping is well defined. We must show that R,fe H,_,. That is we must
show that for each fixed ¢ there is a function h € G,_ for which (R,g)(x) = R f(s,x).
We have R, f(s,x) = (R(R@))(*) = (R(R,g))Xx). Thus letting h = R,g we see
that R feH,_,.
We see that R, is a homomorphism as follows
E,(f 1f2) = R(RJ9:92)) = R(R,g, " Ryg,)
= R{Rg,) ' R(Ryg,) = ﬁtf 1’ ﬁrfz-
RESOLVENT EQUATION. We first wish to observe that the homomorphisms
R, : G = G satisfy the resolvent equation

(3.4 R(R(9)) = [R(@)] ™' [Ri)]™* Re+1(9)-
We compute this as follows
R(R,(9)) = [R(9)]™! V\[R.(9)]
= [Rd)] ' [Vd@)] ™" Virnl9)
= R ' [g7 V)] 197 WVirnlg)
= [R(@]7! [R()] Re+(9)-
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From this we wish to conclude that the R, satisfy the resolvent equation

3.5 RR () = [RNOI RN R,

To see this we let fe H and g € G such that f(s,x) = (R,g)x). For each fixed
nlet g, = R,g and for each n and s let £,(s,x) = (R,f)(s, x). We have

15,%) = (Rof)s, %) = (R(R@)x)
= (R(R, M) = (R(g)(x) .
The above is true for each fixed s and for each fixed n. Thus we obtain:
(RARH)Ns, %) = (R, %)
= (R(Rg)x) = (R(Rg))x)
= (R(RR, (@) = (R(R{g™'V,9)(x)
= Rg(V.9)™ 1 (V)™ Virag))x)
= Rg7'V) g7V g7V i)
= (R{(R,9)™! " (R9)™" " Ry1ag))X)
= ([R(R.9)]™ ' [RRP]™* [RAR+a9)](X)
= ([R(R9]™ ! [RRP]™" [Ri+sR9)D()
= (RS [R17* [Resaf DGs, ),
and (3.5) is satisfied.
For use later we will want the following condition satisfied : If a(¢) is the charac-

ter of H, defined by (a(f), 1) = A(f) [recall that H, is a subgroup of the character
group of R,] then there is an extension y(t) of a(f) to all of H such that

(3.6) G + ). = GO - %9).0) - (s), Ref)
for each fe H.

(3.7) We say that (X, T,) has quasi-discrete spectrum if the quasi-eigenfunctions
G separate points in X,

4. Abstract system of quasi-eigenvalues and the existence problem

We begin by defining an abstract system of quasi-eigenvalues. Our goal will
then be to show that for each such system there is a dynamical system (X, T,) with
an equivalent system of quasi-eigenvalues. By an abstract system of quasi-
cigen values we mean an increasing family of abstract abelian groups
Ay c Ay-r <A, = 3 A= U,. 4, where 4, is a subgroup of the charac-
ter group of R,;. Along with this we have homomorphisms ¢, : A — A for each
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te R, such that ker 6, = 4, and 0,4,,, < 4,, n =1, 2.-.. Moreover we have

4.1 0(0,a)) = [o(a)]™* [0, (D] 0,4,(a).
Further we let «(f)e A, be the character for which («(t),a) = (a,t); teR, and
a € A. We suppose that there is an extension y(¢) of «(z) to all of 4 such that

(4.2 Gt + 5),0) = (¥() * ¥(s), A)(3(s), 6,).

If (X, T,) is a dynamical system with quasi-discrete spectrum (H,, R,) then we
say that (H, R) is equivalent to the abstract system of quasi-eigenvalues
(4,,0,,7(t)) if there is an isomorphism ¢ : H » A such that ¥ = id on H, and
Y : H, - A, is an isomorphism, and y R, = o).

THEOREM 4.1. If (A,, o, y(t)) is an abstract system of quasi-eigenvalues then
there is a dynamical system (X, T,) whose system of quasi-eigenvalues (H,, R,) is
equivalent to (A,, o,, (1)).

ProoF. Let 4 = U%_,4, and 60, : A4, > A4,,, be the inclusion map. Let
X=A; then (X,0,) forms an inverse system of groups and we let X = lim, X,
We see that X = 4. Welet S, : X — X be defined by S,(x) = x - 8,(x) where &, is
the dual of g,. Since g, satisfies (4.1) we see easily that &, also does. We compute

St+u(x) =X at+u(x) =X 3,(3”()6)) * Gx) - au(x)
=[x 6,0)][8(x - 6,(x))]

= 5,(x) - 8{5,()) = S(S,(x))
and thus

(4.3) Sien=5,"S,
We have that (1) satisfies the following
(¥t + 5), @) = ((1)¥(s), A)¥(s), 5(a)).
Thus we obtain
4.4) Pt +5) = (1) - 9(8) * 8,(¥(s)) = (1) S¥(s)).
We let T,(x) = (1) - S{(x) and observe
T, f(x) = y(t +5) - Si4 )
= Y(DS,((s)) * SLS(x))
= 7(0) - S(()S(x))
Ty($)S(x)) = T(T{(x)).

]
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Thus
(45) Tt+s = Tt ) Ts'
We wish to observe that S, is an automorphism of X, We observe that S, = id
and S = S,_, = S, S_, = S_, + S,; therefore S, is one-to-one and onto.

We let G, = {la : a€ A, and 1 e C}. Hence we look at a as a function on X. It

is immediate that G, < G,. Not so immediate is the needed fact that G, = G,.
We want two things which we will attempt to prove in the next section.

1) Sufficient conditions on A such that (X, T) is ergodic.

2) The fact that in an ergodic system quasi-eigenfunctions of distinct classes
are orthogonal. And for two elements f, g € G, either f L g or f =kg, k constant.

With those two results we easily get G, = G,. We see this as follows: Each
G, <G, and G,,, -G, < G,.y —G, Thus suppose f€G,.; — G, Under
these conditions f L Gpvq — G, 2 Gy — G form > n. Thus f L G'— G,
Since the characters span L?(X) we see that fespan G,. Thus span G, = span G,.
If G, # G, then there would exist fe G, such that f L G, so span G, # span G,.
So we conclude G, = G,.

We see that H, may now be defined H, = {(a,y(t)) - 6.a :a €4,}. In the
system (X, T,) we now wish to compute what R, is on H = UZ H,. Let
(a,y(s)) - a,a (ac 4,) be in H,. To compute R, we must do the following: for
each fixed a we apply V, and compute the quasi-eigenfunction.

Thus

(Via,5(s)) - o5a)x = ((a,%(s)) - 0(a), ()S,(x))
= (a,7%(9))e,a, A))(e(a), x8,(x))
= (0,4, (D)0,0,(a), x)(a, (5))0,(a), x).

Thus

(4.6) R[(a,76) - 0,a] = (0,8,%(9)) - o,0,a.

We wish to show that the systems {H,, R,} and {4,,0,} are equivalent. If a € 4 let
4.7 Y(a) = (a,y(s))o,aeH.

The mapping ¥ is a homomorphism and it is onto. In order to see that it is one-to-
one we need to show (a,y(s)){g,a,x) = 1 for all s and x implies a is the trivial
character. Fix s; then this means that (a,y(s))g,a = 1. |(a,y(s))[ =1 thus g(a) is
a constant character so o,a =1. This is true for arbitrary s. The kernel 6,= 4, so



Vol. 16, 1973 FLOWS WITH QUASI-DISCRETE SPECTRA 31

ae A;. We now have (a,y(s)) = 1 for all s and a e 4,. The ergodicity of (X, T,)
thus implies a = 1.

We must now only check that Yo, = Ry. In order to do this we must give
another computation for R, We observe

R(a,¥()o.a = R, - R{a),
but we have R, - R; = R, * R, so that
(4.8) R(a,»(s)o,a = R,R(a) = Rya,y()oa)
= (0(a), ¥(s)) 5,0(a).

We use (4.8) in the following computation

Y(oa) = (0{a),y(s))o,0,a

Rya) = R[(a,v()o,a] = (6{a), /(s))o.0(a)
thus Yo, = Ry and the theorem is complete.

We wish now to examine the system (X, T,) defined in the previous theorem
and see whether it is ergodic.

THEOREM 4.2. The system (X, T,) defined in the previous theorem is ergodic.

PrOOF. (Omitted. Numerous misprints in the manuscript made the proof
obscure. Nevertheless, the statement is true.)

5. Orthogonality of quasi-eigenfunctions

In this section we wish to examine the quasi-eigenfunctions and to establish
some of their properties.
(5.1) Iffand geG andif R,f = R,g for all te R, then fis a constant multiple of
g, moreover the constant has modulus 1. We see this since

Thus by ergodicity f/g = constant.
(5.2) Let P:G — H be defined by Pf(x) = (R,f)(x). That is, each element of G
is mapped to its quasi-eigen value. By(5.1) we see that the kernel of P is K, the
multiplicative group of complex numbers of modulus 1. Thus we may split G.
That is, G =K x ®. We let each G, = K x ®,. We see that P restricted to ®@,, is
an isomorphism into H,.

For the next lemma we use the following notation: If s,s,---s, are n real
numbers let P(s;--s,) = R, 0 R, 00 R,.
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LemMa 5.3 H, = [ ,.paker P(sy,-,s) = Z,.

ProoF. We prove this by induction. Let n = 1. If fe H, then f : R; - C and
Rf=1s0 feX, Then H; c X,. Suppose fe X, then R, f=1 for all teR,.
Since V, is ergodic we see that fis a function of s alone, that is f : R, - C. Since
fe H also we have f = Rg for some g € G. Now f'is a function of s alone so g € G,
and fe H,.

Suppose our statement is true for n = p thatis H, = X,. We wish to show that
this implies H,+; = X,+1. Let fe H,, then for any s we have R fe H, = Z,.
Now if R fe X, we have immediately that fe X,,; 50 H,,; = Z,44.

Now let fe X,,;. Then for any t we have Rfe X, = H,so RfeH, for all t.
Since fe H we see that f = R.g for g e G so R,R,g € H,, for each fixed . We must
show g €G,,;. We can show this by showing that for each fixed s the
function g, = R,g € G,. Since R g e H, for each ¢ we see that g;€ G, which com-
pletes the argument showing X,,, = H,,,. Thus X ., = H,,, and the induc-
tion is complete.

LemMa 54. If H, has no elements of finite order then neither does
(Dn+ll(Dn‘

Proor. Consider P :®,,., - H,,,. This is an isomorphism. For each
P(sy-s,)e X, we see P(s; ---s,) 0 P :®,, — H,. We must show that if f¢®, then
neither does any power of f. This is the same as showing that if Pf¢ H,, then neither
is any power of Pf. If Pf¢ H, then by the previous lemma there is a P(s; -+-s,)
such that P(s, -+~ s,)(Pf) # 1. Since H, is assumed to have no elements of finite
order we see that no power of Pf is in kernel 2(s,; ---5,) and then no power of
PfeH, so ®,,,/®, has no elements of finite order.

By sp(G,) we mean the closed linear span of G, in L*(X, y).

LeMMA 5.5. If geG,y([D,e1] and g ésp(G,)[®,] then g L h for each
h € G,[D,]).

Proor. Let H be the orthocomplement of sp(G,) in p(G,.,), ie.,
H = sp(G,+1)09sp(G,). Let g = g, + g, where g, esp(G,) and g, H. We must
show that g, = 0.

We first observe V, : sp(G,) — sp(G,) so since V, is unitary V,H < H. This is
true for each t. Since g € G, , we see that V,g= f,g where f, € G, for each fixed ¢.
We have the following equations:
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Vzg = Vtgl + Vtgz
Vg = f49,+ 1492

foreach t, f,e G,, g, €sp(G,) so f,g, €sp(G,). We examine f,g, and want to show
that thisis in H. We need only show for each h e G, that (h,f,g,) = 0. We have
(h,f.92)= (fih,g,)=0 since f,heG, and g, € H. We then conclude Vg, = fg,
and Vg, = f,g,. Since |f}| = 1 we sec that |g,| and |g,| are constant. If both
g, and g, were different from zero we would conclude that g,/g, = k and thus
g1 = kg,. This is impossible since g, 1 kg,. Thus either g; or g, =0 since g ¢
sp (G,) we get that g, = 0 and this concludes the proof.

THEOREM 5.6. If H, has no elements of finite order then quasi-eigenfunctions
corresponding to distinct quasi-eigenvalues are orthogonal.

Proor. It suffices to show that the elements of @ are orthogonal. Since ® =
U2 1@, we proceed by induction. We must observe that the elements of @, are
orthogonal. Let f and g € @, then V. f =i(1)f, V.g=0(t)g, OU) # A(f). Since V
unitary (f,g) = (V.f,V.9) = A1) 0(1)(f, g). Thus either O(f) = A or (f,g) =0.
The first case is ruled out so (f,g) = 0.

We now assume that the elements of ®, are mutually orthogonal and we must
show that this is true of @, ,. Part of what we must show is that if ge ®,,, —®,
then g L ®,. The previous lemmas show that if g¢sp(®,) then g L ®,. We
must rule out the possibility that g esp(®,). We suppose that this is true and
arrive at an absurdity. If g e sp(®,) then g = X c,g, where g, e ®,and c, = (9,9
We decompose @, into cosets by @, ;. We index these cosets A,. In each coset we
index the functions gg; .

Thus we have

g = Ep Zécﬂégﬁé;
since ge ®,,, — D, we have

* Vg =1rfg= Z,szacﬂofzgpa-
We observe f,e G, — G,_; and then f, = k,gj 5., k, a constant depending only on

t Ik,l =1 and g} ;,€ D, —D,—1 5O gp 5, # 1. Thus we obtain

*E Vg = ktzﬂ Zacpag;ioaogpa-
We also have
b Vg = ZﬁzacﬂaV:gpa

= X Zacﬂafﬁfsgﬂa
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where f;; € G,_;. Thus we may write f3; = Pj,g55 Where Pg; is a constant of
modulus 1 and g, € @,_.

Then

*okkok

Vg = Zﬂ'zécﬁép ,;agp'a'gﬁa-
Putting ** and **** together we can write
Vg = Z/J Zad/;agﬁoaogﬂagptoao €®,~0, ,
|das| = cps
and
Vg = zﬂzae£69ﬂ6 Ie,,',,l = Cgs-

If we let giwgu = Gna.xy then we see by comparing coefficients that Iaﬁ,,]
= la,‘(ﬁ‘a,] = |a,,z(ﬁ,,,) .-+, Since®,/®, _ ; has no elements of finite order we see that the
sequence (g,)"gy has no repetitions. Then the coefficient sequence |ag, |=|ays.s)|
= |an,“,‘ (,)I = ... is infinite. This is only possible if lam,[ = 0. Consequently g
must be constant. But ge®,,., —®, so g is not constant. Thus we have shown
ge ®,,, —®,and then g L ®,.

We now need only show thatif g, and g, € @,., and g, # g, then (g,,9,)= 0.

From the previous argument and the induction hypothesis we may assume g, and
g2€ q)n+1 _d)n' If (gl’ gZ) # 0 then

(V91,V:92) = (91,92) # 0.

Letting V,g; = fig we get
0 # (flg1.f’92) = (FF 9192,

fY2¢ G, tkus there is a g € @, and a constant k, such that k,g= £} and therefore
0 # (kg,9:92) = k(9,992

Since g9, € ®,4, —®, and g € ®, we have (g,4,9,)= 0 from the previous argu-
ments. This is the needed contradiction and concludes the theorem.

6. Uniqueness

The purpose of this section is to show that if (X, T,) and (X', T}) are two sys-
tems with equivalent quasi-eigenvalues then the systems are isomorphic. To do
this we first want to set some algebraic background.

Let us recall the various maps associated with (X, T,). If fe H we let f° be the
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element of G whose value at x is f5(x) = f(s,x). With this notation we recall all
our fundamental mappings

R,g = g~ 'V (g) for each teR.

R,:G - G with G, —» G,_,. We have R : G » H which is given by
* (Rg)t, x) = (R'g)(x) or, said in another way,
E (Rg)' = Rg.
Finally we have R, : H — H which were defined as follows: if fe H then there is a
geG such that f(s,x) = (Rg)x) = (R,)'(x). We let (Rf)s,x) = (R(R,@))x).
Using our notation we see that f° = R,g thus
e (R'Jy: RS

For (X', T)) we define the same mappings, V;, R, R, R’. We say that the two
systems (H, R) and (H’, R)) are equivalent if there is an isomorphism  : H — H'
for which YR, = Ry. We recall that

1+Ka>Kx® <H-1
P

ol b

15K Kxd & H -1
Pl

where K x ® ~ G, Kx®' ~ G',P(H) =0,P'(H)=®',PR =id,P'R’ = id. We
define © as follows : let g = k- f, keK, fe ®, ©{g) =93k f)=k - n(f) where
n(f) = P'YR(f).

I wish to show that P’ can always be chosen so that

6.1 Of° = (Yf) for each fe H and seR.

Recall f*e G as the above makes sense. If ge G let g = k(g) - ¢(g) be its decom-
position and similarly if g’ € G',g"=k’(g") - $'(g"). To show (6.1) we must show
how first

O(f*) =OK(f)P(f) = k(f*) - n(¢(f*)
Wf) = E'f)) - ¢ @),

thus we must show

k(f*) - n(d(f) = K'((¥f)) - d"((WSf)).
I claim first that
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(6.2) n(¢(f)) = &' (YN

In order to show this I show first

(6.3) Y(R() = R'(Y )
Consider

RUNGX) = RUNOZ RS ) = Ref s, %).
We now apply V to the function (R f)(s, x) and we get (W(R.))(s, x) =(R, (¥f, s, x)
=(R N "E RN 2R G)5x); thus GRUYNEX) = R0 X %)
which proves (6.3).
We now use (6.3) to prove (6.2).
n(¢(f*)= P"YyR(f*)= P'YRPR(f?)
= PYR(f) = P'R'Gf) = ¢'(f).
Thus (6.2) holds. We must consequently only prove (6.4) to get (6.1):

(6.4) P’ can be chosen so k()= k'((¥f") ) for all s.
Suppose we consider two arbitrary splittings

15K>KxOS5Ho1
P

Lv

1KoK x®' <X 51,
Pll

We wish to modify the second splitting so (6.4) is satisfied. We can write
Wf) = K"((f))e"(¢f)) ,
= k(f KT K ©F)) - "))
If we find a homomorphism © : ® — K such that ©(d"((yf))
= [k(f)]™' K"((Yf)) then P'(h") = ©(¢"(h") - P"(h") will give us a splitting
satisfying (6.4).
7. Conclusion

It is at this point that T am stuck. I can’t find such a ®. Maybe without more
hypotheses itisn’t true. If (6.4 )is true then (6.1 ) holds and we can conclude as fol-
lows. Observe first that if ge G and g = ¢ - f then

Ri(©9) = R/(nf) = R(PYR({) = (R'P'YRf)*
= (VRf) = (YRg)
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thus (YRg)' = R(Bg) for all ¢.
Observe next ©(V,g) =0(g) - O(Rg) = ©O(9) O(Rg)‘ = O(g) - (YRg)’
=0(g)R,/(®g) = V,0(g). Now we could conclude as in our other paper.
Concerning the other things: Section 5 proves (I think) the orthogonality of the
distinct quasi-eigenfunctions. This does not use total minimality or complete
ergodicity. Off hand it seems also to apply to the paper of Abramov and to Parry
and Hahn. This would extend these results provided there are no mistakes.

F. HanN
(Ex. YALE UNIVERSITY
New Haven, Connecticur, U. S. A)



