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ABSTRACT 

These notes (essentially unedited) were sent to W. Parry in 1964. The first two 
parts are complete and in a letter to Parry at that time Hahn indicated his 
intention to publish them. Evidently he did not manage to do this. The remain- 
der of these notes represents art attempt to establish a theory of quasi- 
discrete spectra for discrete one-parameter flows. Hahn indicates the gaps and 
in a following note Parry clarifies his theory. The first part of these notes 
presents a characteristic example of a discrete one-parameter flow with quasi- 
discrete spectrum. Ergodicity, minimality and distality are established. The 
second part examines the Banach algebra of functions on R generated by 
{exp q(t)" q a real polynomial of degree < n-I- 1 } and shows that the shift 
isometrics arise from a discrete one-parameter flow on its maximal ideal 
space A n and that if n is finite this flow is isomorphic to the example ex- 
amined in the first part. 

Introduction 

We let X be a compact  topological  abel ian  group. We say that T is an affine 

t ransformat ion  if there is an au tomorph i sm S of X and an element Xo ~ X such 

that  T ( x )  = Xo �9 S ( x ) .  We ask the quest ion as to when is it possible to find a one 

parameter  group T,, t a real number ,  of  affine t ransformat ions  of X given by 

T~(x) = x , "  S t (x) .  Since Tt+s = TtTs we see that 

(0.1) S,+, = SiS, 

(0.2) x,+, = x,S,(x,). 

These conditions are necessary and sufficient for the T~ to form a one parameter 

group. Since Iwasawa has shown that the automorohism group of X is totally 

disconnected it follows that the family T, cannot be continuous in t. Thus to 
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begin with it is not clear that one parameter groups of affine transformations 

exist. We intend to exhibit a family of examples of one parameter groups of 

affine transformations. These will be analogous to the single affine transformation 

with quasi-discrete spectrum. We will then study this notion from the abstract 

point of view. Finally we consider the relation of these transformations to the 

compactification of the reals with respect to a particular function algebra. 

1. The example 

We let F be the Bohr compactification of the reals. We let Rd be the additive 

group of reals with the discrete topology. Let X = F x ... x F (n times); then 

2 = R e  x .-- x R d (n times) where 2 is the dual group of X. If  we use 

= (Vl "" ~,) to designate elements of X and v = (vl, . . . ,  v,) to designate the 

elements of 2 and (v, ~) to mean the value of v at ~ then 

(V, ~) = ~ (Vi, ~i). 
i = 1  

We define now a one parameter group, ~t of automorphisms of 2 .  If g = ~tv 

then 
# n = v .  

/~.- I = PI(t)Vn + Vn- I 

# n - 2  = P2(t)Vn "t" P x ( t ) v . - t  + v ._2  

I~. - j  = P j ( t )v .  + P j_~( t ) v ._~  + ... + v . _ j  
. , . , o . , . o ~ 1 7 6 1 7 6  

Pl = P . - l ( t ) v .  + P . - 2 ( t ) v . - :  + "'" + vl  

where Pk(t  ) = t(t -- 1)...(t -- k + 1) k! , k = 1,2,3.- .  

Po(O = 1. 

We see easily that for each t the mapping ~, is an automorphism of J?. 

We now wish to show that St+s = St"  S,.  This actually is a direct result of the 

following equation. 

(1.1) PR(S + t) = Po(s)Pk(t)  + P ~ ( s ) P k - t ( t )  + "" + Pk(S)Po(t) �9 

If  S and t are integers the equation says that the number of ways of choosing k 

objects from s + t objects (Pk(S + t)) is equal to the number of ways of choosing 

none from the s group and k from the t group plus the number of ways of choosing 
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1 f rom the s group and k - 1 from the t group plus etc. Since in both  sides of  this 

equat ion all expressions are polynomials  in s and t, and since the equation is 

true for  all integral values o f  s and t it must hold true for all s and t. I f  we let 

w = ~q~(v) then 

w._j  = [Pj(s)Po(t) + Pj_l(S)Pl( t)  + ... + Po(s)Pj(t)]v. 

+ [Pj-I(s)Po(O + Pj-2(s)PI(t)  + ... + eo(s)e j - l ( t )]vn-1 ... 

�9 .. + Po(s)Po(t)on-j. 

I f  we let # = Ss+,(v) we have 

it~_j = Pj(t + s)v~ + Pj_ l ( t  + s)v~_ 1 + ... + v~_j. 

Using (1.1) and comparing the above equation we have~s+,= ~q, St. We let St be 

the dual au tomorphism of  ~qt. That  is (Sty', v) = (~,, ~qtv) for  ~ ~ X and v ~ .~. We 

immediately see that  

(1.2) S.+, = S~-S , .  

Our  next task is to find a family ~,(t) ~ X for which(0.2)is satisfied. Let ~(t)~ F be 

defined by the following: (~(t), s)=e TM for  each real number  t and s E Rd. This is 

a dense one parameter  subgroup of  F. It  is immediate  that ~(t + s )=  ~(t)o~(s). To  

see that it is dense we need only observe that if  n ~ Ra and (~(t), n) = 1 for  all t 

then n = 0. We define ~(t) as follows 

(1.3) r(t) = (~(t), ~(P2(t)), ~(P3(t))"" ~(Pn(t)). 

We now must show that (0.2) holds, i .e. ,~(t+s)=~(t)  �9 S~(7(s)).This is equivalent 

to showing that 

(~(t + s), v) = (~(t) S,(~(s)), v) 

= (r(0, o) Lo) 

for  all v e ~ .  

I f  we let exp x = e ~ then we have 

(r(t + s), v) = exp (VtPl(t  + s) + vzPz(t + s) + ... + v,P,(t  + s)) 
and 

(r(t), v) = exp (VlPl(t) -b v2P2(t) + ... + v.Pn(t)) 

and (y(s), ~tv) = 

exp {Px(s)[P~-x (s)v~ + Pn_ 2 (s)v~_l + "'" PI (s)v2 + vt] 

+ P2(s)EP.-2(t)v. + P . -3  ( t )v . - I  + "'" v2] + "'" + P.(s)Po(Ovn}. 
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Comparing the three equations above and using (1.1) we see 

We have thus shown that if 

(1.4) I',(7) = 7 ( t ) ' S , ( 7 )  then 

T,+, = T , o  T,. 
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that (0.2) holds. 

(1.5) 

Thus we obtain 

(1.6) R,(r)  = ~,- l s,(~,). 

Since the T, form a one parameter group we see that/~t and Rt satisfy the resolvent 

equations 

(1.7a) ~t"  J~, = ht+~ - ~t - / ~  

0.7b) R," R,(r) = R,§ [n,(~)]-I [ R ~ ( ~ ) ] -  ~. 

Again from the fact that the 7", form a one parameter group we obtain 

(1.8) r(t  + s) = c~(0 "=(s) �9 R,(=(s)).  

THEOREM 1. Let (X, Tt) be defined as in the preceding paragraphs. Then 
(X, T,) is eraodie. 

PROOF. Let H ,  be the subspace of L=(X) spanned by the functions determined 

by Rat. These are all functions, of the form f~(~) = (7, v) where v e Ra t. The ortho- 

gonal complement H2 of  H t  is the subspace determined by " Ra\Rd (set theoretic 

complement). We define the unitary operation Vt : Lz(X) ~ La(X) by Vt f  = 

f o  Tt for all f ~  L=(X) and t a real number. We observe that if fo is deter- 

mined by v ~ R~ \ Ra t then Vtfo = ~ g fo where # is a non-constant character and 

2 e C with 12[ = 1. We then have 

n l (Vj~,fv) = 0 for v ~ Ra \ Rd. 

Using continuity and linearity arguments we obtain 

lim (V,f,f) = 0 for f e n  2. 
t-~+~O 

We wish to examine some of the properties of the dynamical system (X, 7",) 

which we have just described. In order to do this we establish some convention. 

Let Ra / c ~ for j = 0, 1, 2. . .  n - 1 be the set of all v ~ .~, v = (vl, v2, "" v j, v j+ 1 

�9 ..vn) where 0 = vj+2 = vj+2 . . . . .  vn and let Rd a ~ We defineF~= X for 

j = 0, 1, 2 ... n in a similar fashion. We let/~t be defined by the equation 

~,= ~,-I. 
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We now will show that (X, Tt) is ergodic by showing that Vt has only constants 

in the eigenspace one. Let f � 9  L2(X)  and suppose Vf f = f ,  f = f l  +./'2 where f l  �9 H t 

and ./'2 e l l2 .  Since HI  and H2 are stable under Vt and Vt f  = f ,  we get V t f l  = f l  

and V, f2 = f2. Since (Vtf2,f2) ~ 0 we see that f2 = 0. Thus f � 9  Ha and is a func- 

tion of the variable Vx alone. We have Vtf(~'O = f(e(t)7~). Since {a(t)} is a dense 

subgroup of F we see that f is constant almost everywhere and this concludes the 

proof.  

THEOREM 2. The  system (X,  Tt) is distal. 

PROOF. We suppose that { T J 1  : m �9 and { T , j  : m �9 are two nets in X 

such that there is a z �9 X for which T~..p --, z and Ttr,~ ~ z. We must show that 

p = ~ in order to prove our theorem. Since T t ( ~ )  = ~(tm)St.(~) and since X is a 

group we see that St~(~'/~-~) ~ e. Thus it is enough to show that if St.,(~) --, e 

then ~ = e. We compute this from the definition of St,,. I f  St_(~) ~ e then for every 

v e a ~ we have (St.~(c~), v) = (~, ~ t v )  --. 1. I f  ~ = (cq, ~2"'" an) and ~ = ( va ' "  Vn) 

then 

~t_(v) = (vnPn-a(trn) + "" + Pl(tm) VZ + va, 

v.P~_2(tm) + "'" + V2, 

v,). 

Our  procedure is inductive. Let o = v2 = v3 . . . . .  v, then (St.(e), v) 

= (ca, va) ~ 1 for all va �9 Rd so that aa = e. The argument proceeds step by step 

up to n showing that ~ = e and completing the proof. 

TnEORE~a 3. (X,  Tt) is minimal .  

PROOF. Since (X,  Tt) is distal we know from Ellis '  theorem that each orbit is 

almost periodic (using the discrete topology on the parameter t). Thus to show 

minimality we need only show that there is a dense orbit. We wish to show that 

the points Tt(e) are uniformly distributed. This is of  course even stronger than 

density. We see this as follows: T , ( e ) =  ~,(t)= (e(t),e(P2(t)), .--,e,(P,(t)). Let 

v = (v l , . . . , v , )  be a character of X,  then ( v , v ( t ) ) =  exp ( v a t + v 2 P 2 ( t ) +  "" 

+ v,P,(t)). I f  v ~ o then it is easy to see by a well-known result of  Weyl that 

l imr_ co (1/2T yr_r(V , ~(t)) dt ~ O. 

But this is the criterion for uniform distribution and the theorem is compIete. 
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We now indicate that the preceding construction can be carried out in the case 

of infinite product spaces. Let X=I-I~ F be the unrestricted product of the F's. 

Then 2 = E~~ d the restricted product or finite direct sum of the Ra. Since each 

element v e 2 has only finitely many non-zero coordinates we may write 

v = (vl, v2, "" vn, o , o ,  . . . )  and ~t is defined as before. We also define 

~(t) = (~(t), ct(P2(t) ) . . . . . .  o~(Pn(t)... ) and let Tt(y) = y(t) St(y) as before. We again 

see that (X, Tt) in an ergodic distal minimal dynamical system. 

2. Compactifications of {exp qn(t)} 

Let C(R) be the Banach algebra of all bounded complex valued continuous 

functions on the real numbers. By A n we shall mean the closed subalgebra generated 

by all functions of the form exp q(s) where q(s) is a polynomial with real coeffi- 

cients of degree less than or equal to n. We let n = oo and define A~o to be the 

closed subalgebra generated by all functions of the form exp q(t) where q is a 

polynomial with real coefficients. We define the transformation Ut on C(R) as 

follows UJ(s) = f(s + t). Each U, is an isometry of C(R) and U,+ ,  

= Ut o Un. The family is however not continuous in the parameter t since we 

allow non uniformly continuous functions in C(R).For each n (A n, Ut) forms a 

dynamical system. 

For  each n we let Yn be the compactification of N with respect to An. That is, 

Yn is characterized by the following: Yn is compact and there is a one-to-one con- 

tinuous map t/ : R -~ Yn whose image is dense in Yn. I f f~An then f(rl(s)) may be 

extended to a continuous function of Yn. Also i f f ~  C(Yn)then there is an f s A 

for whichf(~(s))= f(s). Under such circumstances each U, induces a homeomor- 

phism on Yn" We again call this by the name Ur  Then (Yn, Ut) forms a dynamical 

system. 

We use (Fn, Tt) to indicate the systems described in the previous section where 

rn = n r. 

THEOREM 2.1. (Yn, Ut) is isomorphic to (Fn, Tt). 

PROOF. Let B(Fn) be the set of all continuous functions on the reals obtained as 

follows: f ~  B(Fn) if there is an f ~  C(Fn) such that f(s) = f(T~(e)). It is not hard to 

see that in order to prove our theorem we need only show that (An, U,) and 

(B(Fn), Tt) are identical. From the definitions of the action of Ut and Tt we need 

only show that An= B(Fn). Let v = (vl " ' ,  vj, ...) be a character on F n. Consider 
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(v, T,(e)) = (v, V(s)) = exp ( v :  + v2e2(s) + v3Pa(s) "" vjPj(s)...). Since only fi- 

nitely many v~ are not zero we see that v restricted to Ts(e) is in A,. Since the charac- 

ters generate C(F~)we see that B(F~) = A,. We need only show that if exp q(t)~A, 

then there is a n f e  C(F~) for whichf(Tt(e)) = exp q(t). Now q(t) has degree j < n 

if  n is finite and j < n if n = oo. Choose a character v = (v~, ..., vj, o, ... ). Then 

(v, Tt(e)) = exp (vlt + v2P2(t) + ... + vjPi(t)). Since the degree of Pk(t) is exactly 

k we see that v may be chosen such that (v, T~(e)) = exp q(t). Thus A, D B(F,) 

showing that A, = B(F~) and completing the proof. 

3. Quasi-discrete spectrum for one parameter dynamical systems 

We now assume that X is a compact Hausdorffspace and that for each t ~ R d we 

have a homeomorphism Tt : X ~ X such that Tt+~ = Tt o Ts. We consider the 

system (X, Tt). Notice we do not assume continuity in the parameter t. We further 

assume that (X, Tt) is minimal. We now wish to define quasi-eigen functions and 

quasi-eigenvalues for (X, Tt). Let V t f  = f "Tt for each f ~  C(X) 

We consider first all f ~  C(X) for which Vtf  = 2(t)f. Since Vt is an isometry of 

C(X) it follows that [2(t)] = 1 and thus by minimality that lf t  is constant. With 

this in mind we let G 1 be the set of  all f for which If[ = 1 and Vtf  = 2(t)f where 

2(t) e C. We see easily that G1 is a group under multiplication. We let H1 be the 

set of  all functions 2 : Rd -~ C such that [2(t)] = 1 and there is f E  G, for which 

V t f  = 2(t)f. Since Vt+s = Vt o V~ we see that 2(t + s )=  2(0" 2(s) so that 2 is a 

character of  R a. Suppose we have already defined H t c Hz c ... ~ H,,  G 1 ~ G 2 c 

�9 .. c G, with the following properties. Each G~ is a group of functions of  modulus 

one contained in C(X). Each e l e m e n t f o f  Ht is a func t ionf  : Rd x X ~ C, f i s  of  

modulus 1. Furthermore if t is fixed thenf(t ,  ) e G~_ 1 and there is a g e G for which 

Vto = f(t, )9. Each 9 ~ Gs has the property that Vt9 = f(t, )9 and f ~  Hi. 

We now define G.+~ and Hn+~. We let Gn+I be the set of  all functions 9 of  

modulus one such that for each t ~ Rd there is an f, ~ G, such that Vt9 = fro. We 

let Hn+ 1 be the set of  all functions f : Ra x X ~ C which have the property that  

there is O ~ Gn+ 1 for whichf(t ,  x) = ft(x) where Vt9 = fro. All the previous proper- 

ties are preserved. We also note that the Ht are groups under multiplication. Let 

H = [-Ji~xHt and G = Ui~176 

We observe that it is a consequence of the minimality of  (X, T,) that i f  two 

quasi-eigen functions have identical quasi-eigenvalues then one is a constant mul- 

tiple of  the other. For  suppose V t g l = f t g ,  and Vtgz=ftgz then Vtg~g~-I = 
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gig2-1 and thus glg~ 1 is constant. On G we define the following homomorphisms : 

(3.1) R t g =  g -  1 Vtg" 

That is, if  Vzg = fro then Rtg = ft. For each fixed t we have f t~  G.-1 if g e G,. 

We observe 

(3.2) RtRs = R s R .  

for gs(Rtg) =(Rtg)  -x v~(gtg) 

= (o -  1 v , g ) - I  v~(g-1 v ,g)  

= g Vtg =1 (V~g) -1 Vs+,g 

= (o -1 v , g ) - '  v,(g -~ v ,g )  

= (R~g) -1 Vt(R~g) 

= Rt(R~9 ). 

On H we wish to define a homomorphism/~t  : H -~ H such that RtH1 = e 

and/~,H,  c H._  1. 

I f f ~  H.  then there is a g E G. such that f ( s ,  x) = (R~g)(x). 

(3.3) Let _Rtf(s, x) = (Rt(R,9)(x). 

This mapping is well defined. We must show that Ri f e  H,_ 1. That is we must 

show that for each fixed t there is a function h e G,_ 1 for which (R,g)(x) = Rff(s,x). 

We have . # , f ( s , x ) =  (Rt(R~g))(x)= (R~(R,g))(x). Thus letting h = Rig we see 

that Ri f e  H._ 1. 

We see that -Rt is a homomorphism as follows 

/~t(f~f2) = Rt(R~(glg2)) = Rt(R~gl" R~g2) 

= Rt(Rsgl)" Rt(Rsg2) = Rtfx"-~tf2. 

RESOLVENT EQUATION. We first wish to observe that the homomorphisms 

Rt : G ~ G satisfy the resolvent equation 

(3.4) Rt(R.(g)) = [Rt(g)]-I  [R.(g)]-~ Rt+n(g). 

We compute this as follows 

R,(R.(g)) = [R.(9)] -1V,[R.(g)]  

= JR.(g)]-1 [V,(g)]-I  Vt+.(g) 

= [R.(g) ] - I  [9-1 V,(9)]-1 g-a V,+,(O ) 

= JR. (o) ]  -1  [R, (g ) ]  -1  R ,+ . ( o ) .  
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From this we wish to conclude that the/~t satisfy the resolvent equation 

(3.5) ~(/~,(f)) = [/~,(f)]-a [/~,(f)]-x Rt+n(f). 

To see this we let f e  H and g �9 G such that f (s ,  x) = (Rsg)(x). For each fixed 
n let g, = R,g and for each n and s let f,(s, x) = (R,f)(s ,  x). We have 

f~(s, x) = (R,f)(s ,  x) = (R,(R,g))(x)  

= (R~(R,g))(x) = (R,(g,))(x) .  

The above is true for each fixed s and for each fixed n. Thus we obtain: 

x )  = x )  

= (R,(R~g,))(x) = (R,(R,gn))(x) 

= (R,(R,(R,(a)))(x) = (R~(Rt(g- 1 V,,g))(x) 

= (R~(g(V.g)-I" (V,g) -  ~" Vt+.g))(x) 

= (Rs((g-x Vng)-  1. (g -x  V ,g ) -~ .  g -a  V,+ng))(x) 

= (R~((R,g) -x"  (R.o)- 1. R,+,g))(x) 

= 

= ([R, (R ,g)] -x"  [R, (R,g)]- I  [R,+,(R,g)])(x) 

= 

and (3.5) is satisfied. 

For use later we will want the following condition satisfied: If  a(t) is the charac- 

ter of Hi  defined by (c~(t), 2) = 2(0 [recall that Hi  is a subgroup of the character 

group of Ra] then there is an extension v(t) of ~(t) to all of H such that 

(3.6) (?(t + s) , f )  = (?(t) . ?(s), f)  " (~(s), Rt f )  

for each f e  H. 

(3.7) We say that (X,  Tt) has quasi-discrete spectrum if the quasi-eigenfunctions 

G separate points in X. 

4. Abstract system of quasi-eigenvalues and the existence problem 

We begin by defining an abstract system of quasi-eigenvalues. Our goal will 

then be to show that for each such system there is a dynamical system (X,  Tt) with 

an equivalent system of quasi-eigenvalues. By an abstract system of quasi- 

eigen values we mean an increasing family of abstract abelian groups 

Al c A 2 ... c A, c ... ; A = d ~=lA, where Al is a subgroup of the charac- 

ter group of Ra. Along with this we have homomorphisms at : A ~ A for each 
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t ~ R  d such that ker at = A1 and atA,+l c A,, n = 1, 2. . . .  Moreover we have 

(4.1) ~,(a~(a)) = [~ , (a)] -~  [a~(a)] -~ ~,+~(a). 

Further we let u( t)e ,~l  be the character for which (u(t),a) = (a,t); t e R  a and 

a e A. We suppose that there is an extension 7(0 of ct(t) to all of A such that 

(4.2) (~;(t + s), a) = (l(t) �9 ~(s), a)(y(s), ata). 

If  (X, Tt) is a dynamical system with quasi-discrete spectrum (H.,_~,) then we 

say that (H,,/~t) is equivalent to the abstract system of quasi-eigenvalues 

(A.,  at, ~(t)) if there is an isomorphism 6 : H --* A such that ~, = id on H t  and 

: H,  ~ A ,  is an isomorphism, and ~ R, = arab. 

THEOREM 4.1. I f  (A,,  at, y(t)) is an abstract system of quasi-eigenvalues then 

there is a dynamical system (X,  Tt) whose system of quasi-eigenvalues (H,,/~t) is 

equivalent to (A,,tyt, 7(t)). 

A PROOF. Let A = (.J ,=1 , and 0, :A , - - .  An+ t be the inclusion map. Let 

X = X ;  then (X, 0,) forms an inverse system of groups and we let X = lira, X,. 

We see that X = ~[. We let S t : X ~ X be defined by St(x ) = x" G(x) where Ot is 

the dual of a r Since at satisfies (4.1) we see easily that 0 t also does. We compute 

s t + , ( x )  = x . O,+~(x) = x . o t ( G ( x ) )  . Ot(x) . G ( x  ) 

= [ x  . G ( x ) ] E o , ( x . G ( x ) ) ]  

= G ( x ) . ~ , ( S , ( x ) )  = s , ( G ( x ) )  

and thus 

(4.3) St+~ = St" S~,. 

We have that ?(t) satisfies the following 

(~,(t + s), a) = (v(t)?(s), a)(7(s), ct(a)). 

Thus we obtain 

(4.4) V(t + s) = ?(t) .  V(s)" G(V(s)) = y(t)St(3~(s)). 

W e  let  Tt(x) = ~,(t) �9 St(x)  a n d  obse rve  

Tt § = ~(t + s)" S, +s(x) 

= ~ ( t ) s , ( ~ ( s ) ) . s , ( s ~ ( x ) )  

= ~ , ( t ) . s , ( 7 ( s ) s ~ ( x ) )  

= Tt(y(s)S~(x))= Tt(T~(x)). 
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Thus  

(4.5) T,+,  = T t . T  s. 

We wish to observe that St is an automorphism of  X. We observe that So = id 

and S O = St- t  = St" S - t  = S - t "  St; therefore St is one-to-one and onto.  

We let G~ = {2a : a ~ A, and ;t ~ C}. Hence we look at a as a function on X.  I t  

is immediate  that G'n ~ Gn. No t  so immediate  is the needed fact that  G~ = Gn. 

We want two things which we will a t tempt to prove in the next section. 

1) Sufficient condit ions on A such that  (X, T,) is ergodic. 

2) The  fact that in an ergodic system quasi-eigenfunctions of  distinct classes 

are orthogonal .  And for two elements f ,  g ~ G, either f 2- g o r f  = kg, k constant.  

With those two results we easily get G" = G,. We see this as follows: Each 

G~ c G n and G~+I-G" c Gn+t -G  n. Thus suppose f~Gn+a-Gn.  Under  

these condit ions f .L Gm+l -Gm ~ G ' + t  - G" for m > n. Thus f 2- G'  - G'n. 

Since the characters span L2(X) we see t h a t f ~  span G'. Thus span G" = span G,. 

I f  G" # G, then there would exist f e  Gn such that f 2_ G~ so span G~ # span Gn. 

So we conclude G', = Gn. 

We see that  Hn may now be defined Hn = {(a,7(t)) 'ata:a e A,}. In the 

sys tem(X,  Tt) we now wish to compute  what /~t is on H = I..J,~tH .. Let  

(a,v(s)) �9 trsa (a~A,) be in Hn. To  compute /~t we must do the following: for  

each fixed a we apply Vt and compute the quasi-eigenfunction. 

Thus  

(V,(a, 7(s)) �9 asa)x = ((a, 7(s)) " try(a), 7(t)S,(x)) 

= (a, 7(s))(a~a, 7(t))(as(a), xOt(x)) 

= (asa, r(t))(cr, crs(a), x)(a, r(s))(as(a), x). 

Thus 

(4.6) /~[(a,  7(s))" asa] = (trsa, r (0)  �9 trttrsa. 

We wish to show that  the systems {H,,/~t} and {An, at} are equivalent. I f  a e A let 

(4.7) ~b(a) = (a, 7(s)) trsa ~ H. 

The mapping ff is a homomorphism and it is onto. In order to see that it is one-to- 

one we need to show (a,7(s))(crsa, x) = 1 for all s and x implies a is the trivial 

character.  Fix s; then this means that  (a,7(s))asa = 1. I(a,r(s))[ = 1  thus trs(a ) is 

a constant  character  so trsa = 1. This is true for arbi trary s. The kernel as = AI so 



VoI. 16, 1973 FLOWS WITH QUASI-DISCRETE SPECTRA 31 

a e A 1. We now have (a, ~(s)) = 1 for all s and a ~ A 1. The ergodicity of (X, Tt) 

thus implies a = 1. 
We must now only check that q/at = ~t~k. In order to do this we must give 

another computation for/~t- We observe 

L ( a ,  7(s))tr,a = R, . Rs(a ), 

but we have R t �9 Rs = R, �9 R t so that 

(4.8) L ( a ,  V(s))a,a = R,R,(a) = R,(a, V(t))tr,(a) 

= (tr,(a), y(s)) tr,tr,(a). 

We use (4.8) in the following computation 

~(trta ) = (tr,(a), y(s))tr~trta 

• ( r  =/~[-(a,  r(s))tr, a'] = (tr,(a), r(s))tr~tr,(a) 

thus ~trt = Rtff and the theorem is complete. 

We wish now to examine the system (X, Tt) defined in the previous theorem 

and see whether it is ergodic. 

THEOgEM 4.2. The system (X,  Tt) defined in the previous theorem is ergodic. 

PROOF. (Omitted. Numerous misprints in the manuscript made the proof  

obscure. Nevertheless, the statement is true.) 

5. Orthogonality of quasi-eigenfunetions 

In this section we wish to examine the quasi-eigenfunctions and to establish 

some of  their properties. 

(5.1) I f f  and g ~ G and if R t f  = Rtg for all t ~ R a then f is a constant multiple of  

g, moreover the constant has modulus 1. We see this since 

V, f -  R , f ' f _  f 
g Rig  �9 g g 

Thus by ergodicity f ig  = constant. 

(5.2) Let P : G ~ H be defined by Pf(x) = (R j ) ( x ) .  That is, each element of G 

is mapped to its quasi-eigen value. By(5.1)we see that the kernel of P is K, the 

multiplicative group of complex numbers of modulus 1. Thus we may split G. 

That is, G = K x O. We let each G~ = K x O~. We see that P restricted to �9 n is 

an isomorphism into H~. 

For  the next lemma we use the following notation: I f  sl, s 2. . .s" are n real 

numbers let P(sl---s~) = / ~  o / ~  o--- o / ~ .  
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LEMMA 5.3 H.  = f-) ~,~RdkerP(sl,...,s.) -- ]~,. 

PROOF. We prove this by induction. Let n = 1. I f f ~  HI then f : Rd -* C and 

/~ f f=  1 so f e  ]~a. Then H 1 = Y~I. Suppose f ~  ]~1 then / ~ t f = l  for all t e R  d. 

Since V t is ergodic we see that f is a function of s alone, that is f : R d -~ C. Since 

f e  H also we h a v e f  = Rsg for some g e G. N o w f i s  a function of s alone so g s G 1 

and f e  H 1. 

Suppose our statement is true for n -- p that is Hp = ]~9. We wish to show that 

this implies Hp+l = ]~p+l- Let f ~ H p + l  then for any s we have Rf f~Hp = Y-w" 

Now i f /~f fe  E~ we have immediately t h a t f e  Ep+l so Hp+I = Ep+I- 

Now let f s  Zp+ 1. Then for any t we have /~ , fe  Zp = Hp so /~ t fe  Hp for all t. 

Since f e  H we see t h a t f  = Rs9 for 9 e G so RtR~9 eHp for each fixed t. We must 

show g s Gp+x. We can show this by showing that for each fixed s the 

function 9~ = R~9 e Gp. Since R,9~ e Hp for each t we see that 9~ e Gp which com- 

pletes the argument showing Ep+ a = Hp+a. Thus ]~p+a = HF+I and the induc- 

tion is complete. 

LEMMA 5.4. I f  H a has no elements of finite order then neither does 

~.+a/r 

PROOF. Consider P : ~ . + l  ~ H,+I.  This is an isomorphism. For  each 

if(st.." s,) ~ Xn we see/~(sl "" s,) o P : r  t ~  HI.  We must show that if f C*. then 

neither does any power off .  This is the same as showing that if Pro H, then neither 

is any power of Pf. If  Pfr  Hn then by the previous lemma there is a P(sl "-" s.) 

such that/~(sx "" s,)(Pf) # 1. Since Ha is assumed to have no elements of finite 

order we see that no power of Pf  is in kernel P(sx .-" s,) and then no power of  

Pfe  H. so * ,+  t /~.  has no elements of finite order. 

By sp(G,) we mean the closed linear span of G, in L2(X,#). 

LEMMA 5.5. I f  geG.+~[ ' r  and g6sp(G. ) [ r  then g l  h for each 

h ~ G,[r  

PROOF. Let H be the orthocomplement of sp(G.) in p(G.+a), i.e., 

H = sp(G.+O| Let O = Oa + 92 where gt esp(G.) and 92 e l l .  We must 

show that 9t = 0. 

We first observe V~ : sp(G,) -~ sp(G,) so since V, is unitary VtH = H. This is 

true for each t. Since g e G.+a we see that V d  = f d  where f~ ~ G, for each fixed t. 

We have the following equations: 
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Vtg = V, gl + Vtg2 

V d  = ftgl + f d 2  

for each t, ft ~ G,, gl ~ sp(Gn) so f, gl ~ sp(Gn). We examinef~g 2 and want to show 

that this is in H. We need only show for each h ~ Gn that (h,ftg2) = 0. We have 

(h,f, g2)= (~h ,  g2 )=0  since j~h ~ G n and g2 ~H.  We then conclude Vtgl =f,  gl 

and Vtg2 = fd2 .  Since Iftl = 1 we see that 1gll and Ig21 are constant. If  both 

gl and g2 were different from zero we would conclude that gl/g2 = k and thus 

gt = kg2. This is impossible since g~ l k g 2 .  Thus either gt  or g2 = 0 ; since g 

sp (Gn) we get that gl = 0 and this concludes the proof. 

THEOREM 5.6. I f  H 1 has no elements of finite order then quasi-eigenfunctions 

corresponding to distinct quasi-eigenvalues are orthogonal. 

PROOF. It  suffices to show that the elements of  �9 are orthogonal. Since �9 = 

~i=~ ~we proceed by induction. We must observe that the elements of  O~ are 

orthogonal. L e t f a n d  g ~ d~ l then Vtf=~.(t)f, V d = |  O(t) # ).(t). Since V 

unitary (f, g) = (Vtf, V d )  = 2(00( t ) ( f ,g) .  Thus either | = 2(0 or (f, g) = 0. 

The first case is ruled out so (f, g) = 0. 

We now assume that the elements ofqb n are mutually orthogonal and we must 

show that this is true of  O~+ 1- Part of  what we must show is that if g ~ qbn+ ~ - O n 

then g • O~. The previous lemmas show that if g ~ sp(On) then g • O n. We 

must rule out the possibility that g ~ sp(On). We suppose that this is true and 

arrive at an absurdity. I f  g ~ sp(qb,) then g = E~c~g~ where g~ ~ qbnand c~ = (g, g~). 

We decompose O~ into cosets by �9 n_ 1. We index these cosets A r In each coset we 

index the functions g#~ . 

Thus we have 

since g ~ (I), + 1 - O n  we have 

* V,g =f,g = Z#Z:# j ,  gp~. 

We observe ft ~ G, - G,-1 and then ft = k t g ~ ,  kt a constant depending only on 
t t, Ik,] -- 1 and g#o~o ~ On- -On- t  SO g#o6o # 1. Thus we obtain 

We also have 

V,g = k, Z~ Z:#~g'ao 6og:~. 

Vtg = F~ Z~cp~ Vtg#~ 

= ZaX~c#~fa~g#~ 
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where f~a ~ G._ 1. Thus we may write f~6 = P~6##'t6 ' where P~6 is a constant of  

modulus I and g~,~, ~ ~ , - I .  

Then 

**** Vtg = ZpZ:#aP~ag#,~,g#a- 

Putting ** and **** together we can write 

V,g = ZaZadJ, g~oaog#agJoa o ~ O, -(1),_ 1 

Id  l-- c .  

and 

If  we let t = gVVg,k #.(~,k) then we see by comparing coefficients that [a#, I 
--la=(,,,I = Since(1)./(I).- I has no elements of finite order we see that the 

sequence (g[k')"O,k has no repetitions. Then the coefficient sequence [a#~ 1= [ a.(#.~,[ 
= [a:(p.,)] . . . .  is infinite. This is only possible if I .1 = 0. Consequently g 

must be constant. But g E (1).+~-(I). so g is not constant. Thus we have shown 

g e (I)n+ 1 - - O  n and then g J_ O.. 

We now need only show that i f g  I and g2 ~ (1).+1 and gx # g2 then (gl, g2) = 0. 

From the previous argument and the induction hypothesis we may assume g~ and 

g2e  (1).+1 -(I).. If  (gl, g2) ~ 0 then 

Letting Vt gi = ft~/ we get 

(Vtgt, Vtg2) = ( g l , g 2 )  ~ O. 

1 2 
0 ~ (f, e l , f ,  g2) = (fffd L gg ,  

f~J[e G. tl',us there is a g e (I). and a constant k, such that k,g = f:j~2, and therefore 

o ~ (k,g, fflg2) = k,(g,Ylg2). 

Since gig2 e (1).+1 -(1). and g ~ (I). we have (g ,~lg2)= 0 from the previous argu- 

ments. This is the needed contradiction and concludes the theorem. 

6. Uniqueness 

The purpose of this section is to show that if (X, Tt) and (X',  T~) are two sys- 

tems with equivalent quasi-eigenvalues then the systems are isomorphic. To do 

this we first want to set some algebraic background. 

Let us recall the various maps associated with (X, Tt). I f f e  H we let f s  be the 
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element of  G whose value at x is i f ( x )  = f(s ,  x). With this nota t ion  we recall all 

our  fundamenta l  mappings  

R t g =  g -  1Vt(g ) for each t ~ R. 

R, : G ~ G with G, ~ G,_ 1. We have R : G ~ H which is given by 

* (Rg)(t, x) = (Rtg)(x)  or, said in another  way, 

** (Rg)' = R,g. 

Final ly  we h a v e / ~  : H ~ H which were defined as fol lows:  if  r e  H then there is a 

g e G such that  f(s ,  x) -- (R~g)(x) -- (Rg)'(x). We let (Rtf)(s, x) = (Rt(g,g))(x).  

Using our  nota t ion  we see that  f~ = R~g thus 

*** (/~,f) ' = R J ' .  

For  (X ' ,  T',) we define the same mappings ,  V:, R~, ~t', R' .  We say that  the two 

systems (H,/~t) and (H' ,  ~ )  are equivalent  if there is an i somorphism ~b : H ~ H '  

for  which ~/~t = ~ k .  We recall that  

R 
1-~  K--* K x ~ ~ H - ~ ,  I 

P 

~ 1, 
I ~ K ~ K x ~ '  R" I-I' 

p '  

where K x q~ ~ G, K x ~ '  ~ G ' ,P(H)  = ~ , P ' ( H ' ) = ~ ' , P R  = id, P ' R '  = id. We 

define O as follows : let g = k " f ,  k s K,  f E ~,  O(g) = 9 ( k  " J ) = k  " t l ( f )  where 

tl(f) = P't~R(f).  

I wish to show that  P '  can always be chosen so that  

(6.1) O f f =  (~f)s for e a c h f ~ H  and s ~ R .  

R e c a l l f f ~  G as the above makes  sense. I f  g ~ G let g = k(g) �9 ~b(g) be its decom-  

posi t ion and similarly if  g ' e  G ' , g ' = k ' ( g ' ) .  qb'(g'). To show (6.1) we must  show 

how first 

O ( f f )  = O(k( f ' )dp( f ' ) )  = k( f~)  �9 tl(dp(f') ) 

thus we must  show 

I claim first that  

(Of)" = k'((~f)~)" ~ '((Of)9,  

k ( f ' ) ,  t/(~b(f')) = k'((~kf)'*). ~'((~kf)~). 
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(6.2) r/(q~(f~)) = ~ '((~ff) .  

In order to show this I show first 

(6.3) ~,(R(f~)) = R'((~ f)~). 

Consider 

( R ( f ) ) ( t ,  x) * (R,(f~))(x)***(_R,f)S(x) = (Rtf)(s, x). 

We now apply ~ to the function (Rtf)(s, x) and we get (~k(/~tf))(s, x) = (/~t (~bf;)(s, x) 

=(R, (~bf)) (x) = (R,(~'fi)(x) *=(R' (@f) )(t, x); thus (r = (R'(@f) )(t ,x) 

which proves (6.3). 

We now use (6.3) to prove (6.2). 

t/(~b(f~)) = e'~kRe)(f ' )= P ' r  ~) 

= P ' tpR( f )  = P ' g ' ( ~ f )  ~ = q~'(~f)~. 

Thus (6.2) holds. We must consequently only prove (6.4) to get (6.1): 

(6.4) P'  can be chosen so k(f  ~) = k'((~kf ~) ) for all s. 

Suppose we consider two arbitrary splittings 

1 - - * K ~ K  x O _ ~ H ~ l  
P 

I ~ K--* K x ~ " - ~ ' f t ' ~  l. 
p,, 

We wish to modify the second splitting so (6.4) is satisfied. We can write 

(~kf) ~ = k"((~kf)gdp"((dpf) ~) 

= k ( f g [ k ' ( f g ] - '  k" ( ( r  ~"((tpf)'). 

If  we find a homomorphism O : 0 "  ~ K such that O(~b"((~bf) ') 

= [k(fS)] -1 k"((~f)') then P'(h')  = O(~b"(h')). P"(h') will give us a splitting 

satisfying (6.4). 

7. Conclusion 

It is at this point that I am stuck. I can't find such a | Maybe without more 

hypotheses it isn't true. lf(6.4)is true then (6.1) holds and we can conclude as fol- 

lows. Observe first that if g e G and g = c �9 f then 

R;(Og) = R;(rlf)= R;(P'~R(f))  = (R'P'~bRf)t 

= (~Rf) '  = (~Rg)'  
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thus (@Rg) t = R' ,( |  for all t. 

Observe next |  = O(g)  . O ( R , g )  = O ( g ) |  | " (@Rg) '  

'O = O ( g ) R t ' ( O g  ) = V,  (g). Now we could conclude as in our other paper. 

Concerning the other things: Section 5 proves (I think) the orthogonality of the 

distinct quasi-eigenfunctions. This does not use total minimality or complete 

ergodicity. Off hand it seems also to apply to the paper of Abramov and to Parry 

and Hahn. This would extend these results provided there are no mistakes. 
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